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a b s t r a c t 

Point cloud registration plays an essential role in many areas, such as computer vision and robotics. How- 

ever, traditional feature-based registration requires handcrafted descriptors for various scenarios, which 

is of low efficiency and flexibility; ICP and its locally optimal variants are sensitive to initialization, while 

globally optimal methods are of high computational time to overcome noise, outliers, and partial overlap. 

Learning-based registration can automatically and flexibly learn shape representation for different objects, 

but existing methods are of either low efficiency or low precision, and poorly perform in partial-to-partial 

point cloud registration. Thus, we present a simple spatial and channel attention based network, named 

SCANet, for partial-to-partial point cloud registration. A spatial self-attention aggregation (SSA) module is 

applied in a feature extraction sub-network to efficiently make use of the inter and global information of 

each point cloud in different levels, while a channel cross-attention regression (CCR) module is adopted 

in a pose estimation sub-network for information interaction between two input global feature vectors, 

enhancing relevant information and suppressing redundant information. Experimental results show that 

our SCANet achieves state-of-the-art performances in both accuracy and efficiency compared to existing 

non-deep learning and learning-based methods on partial visibility with Gaussian noise. Our source code 

is available at the project website https://github.com/zhouruqin/SCANet . 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

With a rapid development of LiDAR, stereo cameras and 

tructured light sensors, 3D point clouds are ubiquitous with a 

ide range of applications [1] , for example, autonomous driving, 

obotics, heritage modeling, augmented reality, environment sur- 

ey, and urban planning. Accordingly, there has been a growing 

nterest in improving performances of classification, segmentation, 

etection, reconstruction, and tracking etc. However, it is difficult 

or traditional algorithms to meet the requirements of practical 

pplication with enormous point clouds in various scenarios. Re- 

ently, great breakthrough has been made by deep learning in both 

fficiency and accuracy of many fields, especially Natural Language 

rocessing (NLP) and image processing [2] , which brings both op- 

ortunities and challenges to the data processing of point clouds. 

Point cloud registration is a task to find a rigid transforma- 

ion between two given partially overlapped point clouds [3] . It 

s indispensable yet challenging in many computer vision and 

obotics areas, e.g. robot and object pose estimation, point cloud- 
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ased odometry and mapping, LiDAR SLAM, 3D reconstruction [4] . 

p to now, the most commonly used methods for point cloud 

egistration are non-deep learning based methods. One is hand- 

rafted feature-based method, finding correspondences through 

ell-designed descriptors (such as SI [5] , 3DSC [6] , FPFH [7] , SHOT

8] , RoPS [9] , LoVS [10] , 3DHoPD [11] ), and then eliminating mis-

atches by a random sample consensus (RANSAC) [12] or least 

quare (LS) algorithm. The other is global optimal methods (such 

s the Go-ICP [13] , the convex relaxation [14] , and the mixed- 

nteger programming [15] ), attempt to find a good optima with 

he ICP [16] . However, these feature-based methods require hand- 

rafted descriptor, which is of low efficiency and flexibility [17] , 

hile most global optimal methods are time consuming, render- 

ng them unsuitable for real time applications [18] . Researches on 

earning-based registration started relatively later than other tasks 

such as classification and segmentation), and there has been a 

rowing interest in recent three years. A set of networks were pro- 

osed, such as DCP [19] , PRNet [20] , RPMNet [21] , PointNetLK [18] ,

CRNet [22] , which could automatically learn shape representa- 

ions. However, most of them are of either low efficiency or low 

recision, and poorly perform in partial-to-partial registration. A 

omprehensive literature will be given in Section.2 . 

https://doi.org/10.1016/j.patrec.2021.08.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.08.002&domain=pdf
https://github.com/zhouruqin/SCANet
mailto:jws@whu.edu.cn
https://doi.org/10.1016/j.patrec.2021.08.002
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Recently, various attention mechanisms, especially self- 

ttention and cross-attention, have sprung up in NLP and image 

rocessing, and show better performances than traditional neural 

etworks. For example, Vaswani et al. [23] proposed a solely self- 

ttention based network to compute representations by relating 

ifferent positions of a single sequence, which could be trained 

ignificantly faster than recurrent or convolutional architectures for 

ranslation tasks; Wang et al. [24] proposed a non-local network 

ith the self-attention mechanism to efficiently and dynamically 

ocus on cores of the image through the attention weight, which 

howed high accuracy in object detection, segmentation and pose 

stimation; Hou et al. [25] introduced a cross-attention module to 

ighlight the target object regions for few-shot classification by 

enerating cross-attention maps between class features and query 

ample features, which is effective and computationally efficient; 

hen et al. [26] proposed a dual-branch transformer for image 

lassification, where a cross-attention module is used in fusion 

o exchange information with the other branch by linear-time 

eneration of the cross-attention maps. Thus, inspired by those, 

e introduce spatial self-attention and channel cross-attention 

echanisms into partial-to-partial point cloud registration, named 

CANet. It is worth noting that our network is fully differentiable 

nd directly processes point clouds without iteration, handcrafted 

eatures, voxelization, region querying and correspondences, re- 

ulting in computational efficiency and robustness to noise and 

cclusion. To sum up, our key contributions are as follows: 

• A spatial self-attention aggregation (SSA) module is applied 

in the feature extraction sub-network to efficiently make 

use of the inter and global information of point clouds in 

different levels; 

A channel cross-attention regression (CCR) module is in- 

novatively adopted in the pose estimation sub-network 

for information interaction between two input features, 

enhancing relevant information and suppressing redun- 

dant information, which can greatly improve the regis- 

tration accuracy and reduce a large number of weights; 

The method achieves state-of-the-art performances by a 

thorough experimental validation, compared against tra- 

ditional methods and latest learning-based methods; 

We release our code to facilitate reproducibility and fu- 

ture research. 

. Related works 

As mentioned above, learning-based methods for point cloud 

egistration have sprung up mainly in the past three years, for ex- 

mple, DCP [19] , PRNet [20] , RPMNet [21] , PointNetLK [18] , PCR-

et [22] . According to whether correspondences are estimated 

r not, existing learning-based methods can be divided into two 

ategories: (1) correspondence-based methods, usually composed 

f keypoint detection, feature extraction, correspondence match- 

ng and registration; and (2) non-correspondence-based methods, 

dopting a global optimal procedure without expensive correspon- 

ence computation. 

Correspondence-based : DeepVCP [27] was the first end-to- 

nd deep neural network for point cloud registration based on 

earned matching probabilities among a group of candidates with 

 learning-based keypoint detector. Deep Closest Point (DCP) 

19] used a transformer network to incorporate global and inter 

oint cloud information, and an attention-based module with a 

ointer generation layer to predict correspondences between two 

oint clouds. However, it was hard to handle partial-to-partial 

oint cloud registration [20] . PRNet [20] was well-designed frame- 

ork for partial point cloud registration, where a Gumbel-Softmax 

ith a straight-through gradient estimator were used to sample 
121 
eypoint correspondences, and distant point clouds were coarsely 

atched by a diffuse (fuzzy) matching. RPMNet [21] was a less 

ensitive to initialization and more robust deep learning-based ap- 

roach, where a differentiable Sinkhorn layer and annealing were 

pplied to get soft assignments. This method handled missing cor- 

espondences and point clouds with partial visibility, but it used an 

terative inference pipeline to achieve high precision, and required 

dditional normal information. 3DRegNet [28] was a deep neural 

etwork to classify point correspondences into inliers/outliers, and 

egress the motion parameters with a Procrustes approach. IDAM 

29] presented an iterative distance-aware similarity matrix con- 

olution layer to find correspondences based on the entire geo- 

etric features and Euclidean offset, which could improve compu- 

ational efficiency and reduce false positive correspondences. Be- 

ides, it could be easily integrated with both traditional (e.g. FPFH 

7] ) and learning-based features. CorsNet [30] fed global features 

rom PointNet [31] to per-point local features to make effective use 

f point cloud information, and then the correspondences were as- 

igned by fully connected layers, finally a rigid transform was esti- 

ated by SVD (Singular Value Decomposition). 

Non-correspondence-based : PointNetLK [18] opened up new 

aths for learning based point cloud registration, utilizing Point- 

et [31] to compute a global representation and then optimiz- 

ng the transforms by a modified Lucas Kanade (LK) [32] form 

n iteration. However, it heavily relied upon the estimation of 

 gradient through finite differentiation, which is inherently ill- 

onditioned and highly sensitive to the step-size choice [33] . In- 

pired by [18] , PCRNet [22] presented a fully differentiable frame- 

ork that used the PointNet [31] representation to align point 

louds with fully connected (FC) layers. Experiments showed that 

t is robust to noise and initial misalignment in data. Further, a 

eterministic derivation of PointNetLK [33] was advocated, allow- 

ng for the derivation of an analytical Jacobian matrix that can be 

ecomposed into “feature” and “warp” components. This approach 

ell solved the inherent memory and efficiency issues taken by 

ointNetLK [18] . Deep-3Daligner [34] introduced a new Spatial Cor- 

elation Representation (SCR) feature optimizer with a transfor- 

ation decoder network, which were jointly updated towards the 

inimization of an unsupervised alignment loss. This method was 

f high accuracy but low efficiency. 

In short, the majority of reported learning-based researches 

ere focused on correspondence-based registration, which could 

chieve high accuracy but low efficiency. Non-correspondence 

ased methods with few studies reported gives rise to substan- 

ial advantages in robustness and efficiency, however, most of them 

sed a iteration process to pursuit higher accuracy. 

. Method 

.1. Architecture 

A diagram of SCANet is shown in Fig.1 . The SCANet is com- 

osed of a feature extraction sub-network and a pose estimation 

ub-network. The point clouds obtained from a sensor are referred 

o as the source, while the point clouds of the known model of the 

bject are regarded as the target. 

In the feature extraction sub-network, different from an original 

ointNet [31] adopted in the PointNetLK [18] and the PCRNet [22] , 

 spatial self-attention aggregation (SSA) module is adopted to si- 

ultaneously make use of the inter and global information of each 

oint cloud. Two input point clouds are firstly upsampled into 64 

hannels, and then fed into three spatial self-attention blocks with 

 size of (6 4, 6 4, 128). Outputs of three blocks are aggregated to

epresent information in different levels. Finally, a k max-pooling 

unction is respectively used to select k ( k = 4) points with the most
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Fig. 1. SCANet architecture. The source and target point clouds are firstly fed into a spatial self-attention aggregation (SSA) module with a size of (64, 64, 64, 128) to extract 

pointwise features with a size ( B, 256, N ), which is arranged in a Siamese structure with shared weights; following, a k max-pooling function ( k = 4) is used to find the global 

feature vectors ϕ (s) and ϕ (t) with a size (B, 1024). Secondly, two global features are given into a channel cross-attention regression (CCR) module with a size of (512, 256, 

128, 64, 7) to predict the pose with a size 7, where the first four values of T represent the rotation quaternion q ∈ R 4 , q T q = 1 and last three represents the translation vector 

t ∈ R 3 . 
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Fig. 2. The self-attention mechanism: The shape of input features X is ( B, C 1 , N ), 

where B is the batch size, C 1 is the channels and N is the point number. 
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istinguish features of two point clouds, forming a global feature 

ectors ϕ(s) and ϕ(t) with a size (1024, 1). 

In the pose estimation sub-network, different from a modi- 

ed LK algorithm [32] in the PointNetLK [18] and all fully con- 

ected (FC) layers in the PCRNet [22] , a channel cross-attention 

egression (CCR) module is proposed for information exchange be- 

ween two features during regression, enhancing relevant infor- 

ation and suppressing redundant information. Given two feature 

ectors of the source and target point clouds, four channel cross- 

ttention blocks with a size (512, 256, 128, 64, 32) and five FC 

ayers with a size (512, 256, 128, 64, 32, 7) are applied to esti- 

ate the transformation T, where the first four values of T repre- 

ent the rotation quaternion q ∈ R 

4 , q T q = 1 and last three represents

he translation vector t ∈ R 

3 . 

.2. Feature Extraction 

Many learning-based registration adopted a PointNet [31] to ex- 

ract high dimensional information of each point, however, it lacks 

eometric information. Although PointNet ++ [35] could well solve 

bove problems, but it involves a lot of irregular accesses, result- 

ng in low computational efficiency. As the self-attention can effi- 

iently capture global information [24] , therefore, we adopt a spa- 

ial self-attention aggregation (SSA) module to simultaneously and 

fficiently utilize the inter and global information of each point 

loud in different levels. 

As shown in above Fig.1 , the SSA module mainly includes four 

omponents: (1) a basic convolution to upsample the channel from 

 to 64; (2) three self-attention blocks to extract the inter and 

lobal information of each point clouds; (3) a feature aggregation 

o obtain features in different levels. (4) a k max pooling to select k 

oints with the most distinguish features, forming a global feature 

ectors ϕ. Among them, the core is the self-attention mechanism. 
122 
As shown in Fig.2 , the operations of a self-attention mechanism 

24] on feature map are mainly divided into three categories: query 

 Q ), key ( K ), and value ( V ). Specifically, given a source feature map

 , by interactively multiplying the query ( Q ) in row i and the key

 K ) in column j , a self-attention map ( A x ) can be obtained after

 softmax function Eq. 1 - (2) . Secondly, by respectively multiplying 

he value ( V ) and the attention map, the attention-based feature 

aps ( f x ) are obtained as Eq. 3 . It is note that, for simplification,

he operations of query, key share the weights. 

 x = ( W a X ) T , K x = Q 

T 
x , V x = W c X (1) 

 x = Q x K 

T 
x , A x = sof tmax ( E x ) (2) 

f x = V x A x , F x = V x + a f x (3) 

Where W a , W c denote the weights, α is a learnable weight. 
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Fig. 3. The cross-attention mechanism: The shape of input features X, Y is ( B, C ), 

where B is the batch size, C is the channels. 

e

d

o

3

L

m

t

l

t

t

r

i

t

r

i

b

f

s

i

b

t

Q

V

E

A

F

o

r

A  

a

o

E

t  

B

v  

t

t

t

w

p

w

3

m

t

a

a  

d

t

B

t

e

L

4

4

[

4

a

r

g

T

fi

7

p

p

c

e

i  

w

1

s

s

r

F

t  

[

R  

n

[  

P

s

4

t

t

c

Through such a SSA structure, the point clouds can be directly 

xtracted the inter and global information of each point cloud in 

ifferent levels. It does not involve any query of the neighborhood 

f the point, not generating an irregular access. 

.3. Pose Estimation 

In the pose estimation, PointNetLK [18] adopted a modified 

ucas Kanade (LK) algorithm [32] to iteratively predict transfor- 

ations, but it heavily relied upon the estimation of a gradient 

hrough finite differentiation; PCRNet [22] adopted fully connected 

ayers, however, there are a large number of weights. For regis- 

ration, the information of overlapping regions is significant, while 

he information of other regions will even interfere with the final 

esult. Considering that cross-attention can highlight more relevant 

nformation by generating cross attention maps for two input fea- 

ures [25] , hence, we innovatively adopt a channel cross-attention 

egression (CCR) module in the pose estimation sub-network for 

nformation interaction between two feature vectors. 

As shown in Fig.1 , the CCR module is composed of two 

ranches: (1) the upper line is four channel cross-attention blocks 

or information interaction between two features during regres- 

ion, enhancing relevant information and suppressing redundant 

nformation; (2) the bottom line is five FC layers, concatenating 

oth source and target representations for pose regression. Among 

hem, the key is the channel cross-attention mechanism. 

 x = W a X, K y = W a Y (4) 

 x = W b X, V y = W b Y (5) 

 = ( W a X ) 
T ( W a Y ) (6) 

 xy = sof tmax ( E ) , A yx = sof tmax 
(
E T 

)
(7) 

 x = V x + a A xy V x , F y = V y + a A yx V y (8) 

Where W a denotes the weights, α is a learnable weight. 

The channel cross-attention mechanism achieves simultane- 

usly information interaction between the source and target rep- 

esentations by calculating the cross-attention map at all channels. 

s shown in Fig.3 , we divide the input source feature X into query

nd value of X, and the input target feature Y into key and value 

f Y. Then, the energy matrix between X and Y is calculated by 

q.6 . The cross-attention matrix A xy transforms the source atten- 

ion space to the target attention space (vice versa for A yx ) by Eq.7 .
123 
ased on the above attention weights, the attention-based feature 

ectors of the source and target are calculated as Eq.8 . It is noted

hat, for simplification, the operations of query, key and value share 

he weights. 

Thus, through the channel cross-attention mechanism, atten- 

ion will be gradually focused on much more relevant information, 

hile redundant features will be gradually suppressed, greatly im- 

roving the registration accuracy and saving a large number of net- 

ork parameters. 

.4. Loss Function 

A transformation matrix error between the predicted transfor- 

ation and the truth transformation is considered in the defini- 

ion of loss to train the network, including a rotation error err(R) 

nd a translation error err(t) . The rotation and translation errors 

re defined as Eq.9 , where q 1 and q 2 are quaternions of the pre-

icted and the truth rotation matrices R 1 and R 2 , respectively, and 

 1 and t 2 are the predicted and the truth translation, respectively. 

y minimizing the loss, the pose parameters are directly predicted 

hrough the network. 

r r ( R ) = | | q 1 − q 2 | | 2 2 , er r ( t ) = | | t 1 − t 2 | | 2 2 (9) 

oss = er r ( R ) + er r ( t ) (10) 

. Experiments 

.1. Experimental Setup 

Following experiments are carried on the ModelNet40 dataset 

36] , including 9843 training shapes and 2468 testing shapes from 

0 object categories. Train data are repeated five times for data 

ugmentation with a rotation perturbation. For a given shape, we 

andomly sample 1024 points to form a point cloud with randomly 

enerate rotations within [0 °, 45 °] and translation in [ −0.5, 0.5]. 

o generate partially overlapped point clouds, similar to [21] , we 

x a random point far away from the point clouds, and preserve 

17 points (approximately 70%) closest to the far point for each 

oint cloud. To generate noise point clouds, we randomly jitter the 

oints in both point clouds by noises sampled from N (0, 0.01) and 

lipped to [-0.05, 0.05] on each axis. 

The networks are trained with a Adam optimizer for 250 

pochs, using a cosine annealing schedule with the original learn- 

ng rate 0.001 and the minimum learning rate 0.0 0 0 0 01. The net-

ork parameters are updated on a single NVIDIA GeForce GTX 

080 Ti GPU and an Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20GHz. 

For quantitatively evaluation, similar to [20] , we measure mean 

quared error (MSE), root mean squared error (RMSE), mean ab- 

olute error (MAE), and coefficient of determination (R 

2 ) in both 

otation and translation. Errors of rotation are in units of degrees. 

or comparison, a set of experiments are carried out with tradi- 

ional methods (ICP [16] , Go-ICP [13] , FPFH [7] + RANSAC [12] , FGR

37] DCP [19] ) and latest learning based networks (PRNet [20] , 

PMNet [21] , PointNetLK [18] , PCRNet [22] , IDAM [29] ). It is worth

oting that, in following tables, the data in blue are quoted from 

20] , while the data in green are quoted from [29] . The results of

CRNet [22] and RPMNet [21] are obtained from their provided 

ource code or trained weights. 

.2. Partial Visibility with Gaussian 

Following experiment tests the ability of our SCANet on par- 

ial visibility with Gaussian noise. As listed in Tab.1 , it is obvious 

hat, with occlusion and noise interfered, our SCANet greatly ex- 

eeds not only traditional methods (FPFH [7] + RANSAC [12] , ICP 
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Table 1 

Test on partially visible point clouds with Gaussian noise. 

Model MSE(R) ↓ RMSE(R) ↓ MAE(R) ↓ R2(R) ↑ MSE(t) ↓ RMSE(t) ↓ MAE(t) ↓ R2(t) ↑ Time ∗(s) 

ICP [16] 1229.670 35.067 25.564 -6.252 0.0860 0.294 0.250 -0.045 0.095 

Go-ICP [13] 150.320 12.261 2.845 0.112 0.0008 0.028 0.029 0.991 / 

FGR [37] 764.671 27.635 13.794 -3.491 0.0048 0.070 0.039 0.941 0.123 

PointNetLK [21] 397.575 19.939 9.076 -1.343 0.0032 0.057 0.032 0.960 0.082 

DCP-v2 [19] 47.378 6.883 4.534 0.718 0.0008 0.028 0.021 0.991 0.015 

PRNet [20] 18.691 4.323 2.051 0.889 0.0003 0.017 0.012 0.995 0.022 

FPFH [7] + RANSAC [12] 25.604 5.06 4.19 / 0.0004 0.021 0.018 / 0.159 

FPFH [7] + IDAM [29] 201.924 14.21 7.52 / 0.0045 0.067 0.042 / 0.050 

GNN [38] + IDAM [29] 13.838 3.72 1.85 / 0.0005 0.023 0.011 / 0.026 

RPMNet [21] 10.778 3.283 1.625 0.940 0.0009 0.0304 0.0167 0.989 0.063 

PCRNet [22] 27.0809 5.2039 3.5269 0.8485 0.0032 0.0567 0.0372 0.9616 0.017 

SCANet 15.9613 3.9952 2.4485 0.9111 0.0013 0.0363 0.0236 0.9843 0.023 

Time ∗ is the speed on point clouds with 1024, and it is measured in seconds-per-frame. The data in orange are quoted from [28] . 

Fig. 4. Example results of our method on partially visible data with Gaussian noise. The original source points in green, target points are in black, ground truth points are 

in blue, and predicted points are in red. 
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(

16] , Go-ICP [13] ), but also latest learning-based networks (PRNet 

20] , PointNetLK [18] , PCRNet [22] ), especially in rotation. How- 

ver, there is still a little gap between our method and GNN [38] +
DAM [29] and RPMNet [21] . It is worth noting that GNN [38] +
DAM [29] and RPMNet [21] are both correspondence-based meth- 

ds, which mean a long processing flow. And both two methods 

equire several iterations to achieve such good performances (three 

terations for GNN [38] + IDAM [29] , and five iterations RPMNet 

21] ). Furthermore, RPMNet [21] used additional handcrafted fea- 

ures (XYZ, dxyz and PPF) as inputs, while the input of our SCANet 

s only the coordinate information of point clouds, not containing 

ny other information and involving no iteration. Example results 

f our method on partially visible data with Gaussian noise are 

hown in Fig.4 . 

.3. Noise 

Following experiment tests the ability of our SCANet on par- 

ial visibility (completeness = 70%) with varying Gaussian noise. 
124 
t is worth noting that we use the trained model in Section.B 

noise = 0.01, completeness = 70%) to predict. We randomly jit- 

er the predicted points in both point clouds by noises sampled 

rom N (0, 0.01), N (0, 0.02), N (0, 0.03), N (0, 0.04), N (0, 0.05) and re-

pectively clipped to [-0.05, 0.05], [-0.1, 0.1], [-0.15, 0.15], [-0.2, 0.2], 

-0.25, 0.25] on each axis. 

The registration accuracy is listed in Tab.2 and example results 

re shown in Fig.5 . It is obvious that, with the increase of noise, 

he shapes of point clouds are deformed, and the differences be- 

ween the source and target point clouds become larger, resulting 

n both rotation and translation accuracy of our SCANet slightly de- 

reasing. However, it is still in good performances. It shows that 

ur SCANet is robust to noise to some extent, owing to the aggre- 

ation of inter and global information by the SSA module. 

.4. Overlap 

Following experiment tests the ability of our SCANet on noisy 

noise = 0.01) point clouds with varying overlaps. It is worth not- 
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Table 2 

Test on partially visible point clouds with varying Gaussian noise. 

noise MSE(R) ↓ RMSE(R) ↓ MAE(R) ↓ R2(R) ↑ MSE(t) ↓ RMSE(t) ↓ MAE(t) ↓ R2(t) ↑ 
0.01 15.9613 3.9952 2.4485 0.9111 0.0013 0.0363 0.0236 0.9843 

0.02 16.5131 4.0636 2.5424 0.9080 0.0014 0.0369 0.0243 0.9837 

0.03 17.3978 4.1711 2.6825 0.9031 0.0015 0.0384 0.0256 0.9824 

0.04 18.7338 4.3283 2.8655 0.8955 0.0016 0.0406 0.0276 0.9804 

0.05 20.5612 4.5344 3.0867 0.8852 0.0019 0.0436 0.0301 0.9774 

Fig. 5. Example results of our method on partially visible data with varying Gaussian noise: The target points are in black, ground truth points are in blue, and predicted 

points are in red. 

Table 3 

Test on noisy point clouds with varying overlaps. 

completeness MSE(R) ↓ RMSE(R) ↓ MAE(R) ↓ R2(R) ↑ MSE(t) ↓ RMSE(t) ↓ MAE(t) ↓ R2(t) ↑ 
75% 14.6768 3.8310 2.3127 0.9183 0.0012 0.0340 0.0223 0.9862 

70% 15.9613 3.9952 2.4485 0.9111 0.0013 0.0363 0.0236 0.9843 

65% 18.1313 4.2581 2.6141 0.8990 0.0017 0.0414 0.0274 0.9796 

60% 20.2838 4.5038 2.8310 0.8868 0.0025 0.0499 0.0335 0.9703 

55% 22.4535 4.7385 3.0719 0.8744 0.0040 0.0635 0.0426 0.9519 

Fig. 6. Example results of our method on noisy data with varying overlaps: The target points are in black, ground truth points are in blue, and predicted points are in red. 
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ng that we use the trained model in Section.B (noise = 0.01, com- 

leteness = 70%) to predict. We randomly sample planes that cut 

way 25%, 30%, 35%, 40%, 45% of the predicted points to obtain 

oint clouds with 75%, 70%, 65%, 60%, 55% completeness. 

The registration accuracy is listed in Tab.3 and example results 

re shown in Fig.6 . It shows that, with the completeness decreas- 

ng, the overlap regions become smaller and the information for 

egistration is less. As a consequence, when the completeness re- 

uces from 75% to 60%, the registration accuracy of our SCANet 

lightly decrease, but from 60% to 55%, the precision drops sharply, 

specially in translation. It shows that our SCANet can well handle 

mall overlaps, thanks to the information interaction between two 

epresentations by the CCR module. However, it poorly performs 

hen the overlap is too small. 

.5. Ablation Studies 

To better understand how various choices affect the perfor- 

ance of the network, we compare our SSA module with the 

ointNet [31] in the feature extraction sub-network, and the pro- 

osed CCR with the FC layers in the pose estimation sub-network. 

t worth noting that the PointNet [31] with FC is the PCRNet [22] . 
125 
ll studies in this section are evaluated on the partial visibility 

completeness = 70%) with Gaussian noise (noise = 0.01). 

The results are listed in Tab.4 . By comparing Model A&B, it is 

ound that the SSA can improve the registration accuracy in both 

otation and translation, which is mainly attributed to the fact that 

he proposed SSA module makes full use of the inter and global 

nformation of each point cloud. Through the comparison between 

odel A&C, it shows that the CCR can increase the regression accu- 

acy in rotation, meanwhile, it can save a large number of network 

arameters. This is benefited from that the CCR allows information 

nteraction between two input representations, which can enhance 

elevant information and suppress redundant information. It is ob- 

ious that Model D combines the superiority of both SSA and CCR 

odules, making great improvements in both rotation and transla- 

ion and saving a large number of weights. 

. Conclusion 

This work presents a simple, novel and efficient network, 

amed SCANet, based on spatial and channel attention mecha- 

isms for partial point cloud registration. We creatively propose 

wo new modules: (1) a spatial self-attention aggregation (SSA) 
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Table 4 

Test on unseen point clouds with Gaussian noise of different combinations. 

Model 

Feature Extraction Pose estimation 

Weights ↓ Time(s) MSE(R) ↓ RMSE(R) ↓ MAE(R) ↓ R2(R) ↑ MSE(t) ↓ RMSE(t) ↓ MAE(t) ↓ R2(t) ↑ PointNet SSA FC CCR 

A 
√ √ 

4216653 34 27.0809 5.2039 3.5269 0.8485 0.0032 0.0567 0.0372 0.9616 

B 
√ √ 

4138186 43 22.5121 4.7447 3.1351 0.8744 0.0021 0.0461 0.0305 0.9747 

C 
√ √ 

1542353 39 17.2144 4.1490 2.5774 0.9040 0.0018 0.0422 0.0266 0.9787 

D 

√ √ 

1463886 48 15.9613 3.9952 2.4485 0.9111 0.0013 0.0363 0.0236 0.9843 
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odule to efficiently extract the inter and global information of 

ach point cloud; (2) a channel cross-attention regression (CCR) 

odule in the pose estimation for information interaction and re- 

undant information suppressing between two input features. Our 

CANet is fully differentiable and directly process point clouds 

ithout handcrafted features, voxelization, region querying and 

orrespondences, resulting in computational and storage efficiency 

nd robustness to noise and occlusion. 

However, at present, we still deal with point clouds with small 

umber in the simple scene. How to extend our method to point 

louds with large scale and complex scenarios, especially the vehi- 

le point cloud with large and inhomogeneous density, is a core of 

ur follow-up research. 
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